Abstract

Recently, the AA-stack bilayer graphene nanoribbon (BGN) with a closed edge is observed in experiment. This new type of GN, we called folded GN (FGN), can be formed by folding a monolayer GN (MGN). Electron transport of the folded structures with different edges is studied. The FGNs show unique transport properties different from those of MGNs and BGNs. A metallic MGN with armchair edge (MAGN) is still metallic after folding. However, a semiconducting MAGN can be either semiconducting or metallic after folding, which depends on the width of MAGN and strength of interlayer coupling in the folded structure. The energy gap decreases with the increase of the coupling strength or width. As to the MGNs with zigzag edge (MZGNs), after folding they exhibit interesting conductance characteristics. The conductance steps around the Dirac point are even multiple of G0=2e2/h, while other conductance steps are odd multiple of G0. It indicates that the electron transport around the Dirac point in zigzag-edged FGNs (FZGNs) is similar to that in zigzag-edged BGNs (BZGNs), while electron transport far from the Dirac point is similar to that in zigzag-edged MGNs (MZGNs).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.