Abstract

Graphene nanoribbons (GNRs) have recently emerged as alternative 2D semiconductors owing to their fascinating electronic properties that include tunable band gaps and high charge-carrier mobilities. Identifying the atomic-scale edge structures of GNRs through structural investigations is very important to fully understand the electronic properties of these materials. Herein, we report an atomic-scale analysis of GNRs using simulated X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Tetracene with zigzag edges and chrysene with armchair edges were selected as initial model structures, and their XPS and Raman spectra were analyzed. Structurally expanded nanoribbons based on tetracene and chrysene, in which zigzag and armchair edges were combined in various ratios, were then simulated. The edge structures of chain-shaped nanoribbons composed only of either zigzag edges or armchair edges were distinguishable by XPS and Raman spectroscopy, depending on the edge type. It was also possible to distinguish planar nanoribbons consisting of both zigzag and armchair edges with zigzag/armchair ratios of 4:1 or 1:4, indicating that it is possible to analyze normally synthesized GNRs because their zigzag to armchair edge ratios are usually greater than 4 or less than 0.25. Our study on the precise identification of GNR edge structures by XPS and Raman spectroscopy provides the groundwork for the analysis of GNRs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call