Abstract

The cubic phase SiC nanocrystals (3C-SiC NCs) have been extensively studied for electronics and photonics applications. In this work we study the electron transition pathways of photoluminescence (PL) from 3C-SiC NCs. It is found through measuring the steady-state, blinking and time-resolved PL spectra that surface passivation by glycerol improved the steady-state PL intensity (it does not modify the emission wavelength) and the NCs fluoresced more steadily. The PL decay lifetimes are shown to be the same when the detection wavelength is modified to scan the broad PL peak, implying that the broad PL peak is originated from the distribution of NCs’ sizes. Furthermore, the PL decay lifetimes are not modified by the surface passivation. It is concluded that for PL, the electron is photoexcited from the ground state in the NC to a high-energy excited state, relaxes to the first excited state then radiatively recombines to the ground state to emit a photon. The photoexcited electron at the high-energy excited state could transit to the surface state, resulting in a reduced PL intensity and a decreased on-state dwell time in the blinking trajectory. The PL decay lifetime data implies that the two principal electron transition pathways of (a) high-energy excited state the first excited state the ground state, and (b) high-energy excited state surface state the ground state are independent from each other. We strongly believe that such a deep knowledge about 3C-SiC NCs will open new doors to harness them for novel applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.