Abstract

Heterojunction catalysis, the cornerstone of the modern chemical industry, shows potential to tackle the growing energy and environmental crises. Electron transfer (ET) is ubiquitous in heterojunction catalysts, and it holds great promise for improving the catalytic efficiency by tuning the electronic structures or building internal electric fields at interfaces. This perspective summarizes the recent progress of catalysis involving ET in heterojunction catalysts and pinpoints its crucial role in catalytic mechanisms. We specifically highlight the occurrence, driving forces, and applications of ET in heterojunction catalysis. For corroborating the ET processes, common techniques with measurement principles are introduced. We end with the limitations of the current study on ET, and envision future challenges in this field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call