Abstract
Clarifying the adsorption characteristics of biomolecules on graphene surfaces is critical for the development of field-effect transistor (FET)-based biosensors for detecting pH, DNA, proteins, and other biomarkers. Although there are many reports on biomolecule detection using graphene FETs, the detection mechanism has not yet been clarified. In this study, the adsorption behavior and electron transfer characteristics of 20 proteinogenic amino acids on graphene field-effect transistors are investigated. Large single-crystal graphene films were epitaxially grown on SiC substrates by a resist-free metal stencil mask lithography process then patterned by air plasma etching to form FET devices. Amino acids with different charge conditions (positive or negative charge) were introduced onto the epitaxial graphene surface in solution. The charge neutral points of the drain current vs gate voltage curves shifted in the negative gate voltage direction after the introduction of all amino acids, regardless of the type of amino acid and its charge condition. These amino acid adsorption characteristics agree well with previously reported protein adsorption characteristics on epitaxial graphene surfaces, indicating that the adsorption of proteins in the liquid phase occurs by electron doping to the graphene surface. These results indicate that non-specific protein binding always leads to electron doping of epitaxial graphene FETs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.