Abstract

This work illustrates the impact of atmospheric gases on the surface of epitaxial graphene. The different rate of adsorption on different parts of graphene samples provides a concrete evidence that the surface morphology of graphene plays a significant role in this process. The uneven adsorption occurs only on the surface of the monolayer graphene and not on bilayer graphene. The second monolayer is distinguished and verified by the phase contrast mode of atomic force microscopy and the low energy electron microscopy, respectively. Raman spectroscopy is used to study the strain on the surface of graphene; results indicate that monolayer and bilayer graphene exhibit different types of strain. The bilayer is under more compressive strain in comparison with monolayer graphene that hinders the process of adsorption. However, the wrinkles and edges of steps of the bilayer are under tensile strain, hence, facilitate adsorption. Samples were subjected to X-ray photoelectron spectroscopy which confirms that the adsorbates on the epitaxial graphene are carbon clusters with nitrogen and oxygen contamination. For reversing the adsorption process the samples are annealed and a method for the removal of these adsorbates is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.