Abstract
Gallium nitride is a promising material system for spintronics, offering long spin relaxation times and prospects for room‐temperature ferromagnetism. We review the electron spin dynamics in bulk GaN. Time‐resolved magneto‐optical studies of both the wurtzite and the cubic phase of GaN show the dominance of Dyakonov–Perel (DP) relaxation for free conduction band electrons. Spin relaxation in the wurtzite phase is characterized by an intrinsic spin relaxation anisotropy and the limitation of spin lifetimes by a strong Rashba term. Spin lifetimes are strongly enhanced in cubic GaN, where only a weak Dresselhaus term contributes to DP relaxation. Ion‐implanted wurtzite GaN shows a strong increase of electron spin lifetimes for increasing implantation dose, caused by increasing localization of carriers. The spin dynamics of conduction band electrons in Gd‐implanted GaN as a candidate for a room‐temperature ferromagnetic semiconductor is also only governed by localization effects and does not show signs of an efficient exchange coupling between the electrons and the magnetic Gd ions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have