Abstract
The mechanical angular momentum and magnetic moment of the electron and proton spin have been calculated semiclassically with the aid of the uncertainty principle for energy and time. The spin effects of both kinds of the elementary particles can be expressed in terms of similar formulae. The quantization of the spin motion has been done on the basis of the old quantum theory. It gives a quantum number n = 1/2 as the index of the spin state acceptable for both the electron and proton particle. In effect of the spin existence the electron motion in the hydrogen atom can be represented as a drift motion accomplished in a combined electric and magnetic field. More than 18,000 spin oscillations accompany one drift circulation performed along the lowest orbit of the Bohr atom. The semiclassical theory developed in the paper has been applied to calculate the doublet separation of the experimentally well-examined D line entering the spectrum of the sodium atom. This separation is found to be much similar to that obtained according to the relativistic old quantum theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.