Abstract

The flexural phonons serve as one of the important modes of interaction in graphene that can inhibit carrier mobility. For the estimation of scattering due to flexural phonons a two-phonon scattering process had been in place, as due to symmetry constraints out-of-plane deformations modulate electron hopping only in the second order. But recently it has been shown that electrostatic gating can break the planar mirror symmetry and activate single flexural phonon scattering processes (Gunst et al 2017 Phys. Rev. Lett. 118 046601). Motivated by this we perform single flexural phonon mechanism based analytical and numerical calculations of the electron phonon relaxation rate, energy loss rate and thermopower in single and bilayer graphene and obtain the power exponents of these quantities in the Bloch Gruneisen regime using the non-equilibrium Boltzmann transport equation. We find that the scattering by flexural phonons substantially changes the temperature dependencies from that observed due to in-plane phonons but the carrier concentration dependencies remain the same as of the in-plane phonons for all the three investigated quantities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.