Abstract

Solid-state voltammetry, spectroscopy, and microscopy studies have been used to probe the proton and electron conductivity within a self-assembled cocrystal, HQBpt. This crystallographically defined material contains 3,5-bis(pyridin-2-yl)-1,2,4-triazole, HBpt, dimers that are pi-stacked and hydrogen bonded to 1,4-hydroquinone, H(2)Q, in a herringbone arrangement. When deposited onto platinum microelectrodes, the cocrystal exhibits a well-defined voltammetric response corresponding to oxidation of H(2)Q to the quinone, Q, across a wide range of voltammetric time scales, electrolyte compositions, and pH values. Scanning electron microscopy reveals that redox cycling in aqueous perchlorate solutions in which the pH is systematically varied from 1 to 7 triggers electrocrystallization and the extensive formation of rodlike crystals. Fast scan rate voltammetry reveals that the homogeneous charge transport diffusion coefficient, D(app), is independent of the perchlorate concentration for 0.1 < [ClO(4)(-)] < 1.0 M (pH 6.6) at 3.14 +/- 0.11 x 10(-)(9) cm(2) s(-)(1). Moreover, D(app) is independent of the perchloric acid concentration for concentrations greater than approximately 2.0 M, maintaining a value of 4.81 +/- 0.07 x 10(-)(8) cm(2) s(-)(1). The observation that D(app) is independent of the supporting electrolyte suggests that the rate-determining step for homogeneous charge transport is not the availability of charge-compensating counterions or protons, but the dynamics of electron self-exchange between H(2)Q and Q. We have used the Dahms-Ruff formalism to determine electron self-exchange rate constants which are 2.84 +/- 0.22 x 10(9) and 9.69 +/- 0.73 x 10(10) M(-)(1) s(-)(1) for pH values greater than approximately 2.0 and less than -0.3, respectively. Significantly, these values are more than 2 orders of magnitude larger that those found for benzoquinone self-exchange reactions in aqueous solution. These results indicate that hydrogen bonds play an important role in supporting rapid electron transfer. The increase in D(app) between pH 1.0 and -0.3 is associated with protonation of the HBpt moieties, which triggers a reversible change in the material's structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.