Abstract

The size dependence of the contribution to the excitonic dephasing rate in semiconductor nanocrystals is clarified for various electron-phonon coupling mechanisms. On the basis of these dependencies, the commonly observed linearly temperature-dependent term of the excitonic dephasing rate and the proportionality of its magnitude to the inverse square of the nanocrystal size are attributed to pure dephasing due to deformation-potential coupling. The calculated coefficients of the linearly temperature-dependent term are quantitatively in good agreement with the experimental results on CdSe and CuCl nanocrystals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call