Abstract

The electron—phonon interactions in semiconductor nanocrystals, especially concerning the acoustic phonon modes are derived and the size dependence of the coupling strength is clarified for typical coupling mechanisms. On the basis of these results, the commonly observed linearly temperature-dependent term of the excitonic dephasing rate and the proportionality of its magnitude to the inverse square of the nanocrystal size are attributed to the pure dephasing due to the deformation-potential coupling. The luminescence Stokes shift and the Huang-Rhys factor due to acoustic phonon modes in Si nanocrystals are discussed in conjunction with the origin of the recently observed luminescence onset energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.