Abstract
We study electron-phonon interaction and related transport properties of nodal-line semimetal ZrSiS using first-principles calculations. We find that ZrSiS is characterized by a weak electron-phonon coupling on the order of 0.1, which is almost energy independent. The main contribution to the electron-phonon coupling originates from long-wavelength optical phonons, causing no significant renormalization of the electron spectral function. At the charge neutrality point, we find that electrons and holes provide a comparable contribution to the scattering rate. The phonon-limited resistivity calculated within the Boltzmann transport theory is found to be strongly direction-dependent with the ratio between out-of-plane and in-plane directions being $\rho_{zz}/\rho_{xx}\sim 7.5$, mainly determined by the anisotropy of carrier velocities. We estimate zero-field resistivity to be $\rho_{xx}\approx12$ $\mu\Omega$ cm at 300 K, which is in good agreement with experimental data. Relatively small resistivity in ZrSiS can be attributed to a combination of weak electron-phonon coupling and high carrier velocities.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have