Abstract
Electron-optical phonon interaction is the dominant energy-loss mechanism in low-dimensional Ge/SiGe heterostructures and represents a key parameter for the design and realization of electronic and optoelectronic devices based on this material system compatible with the mainstream Si complementary metal-oxide semiconductor technology. Here we investigate the intersubband relaxation dynamics of $n$-type Ge/SiGe multiquantum wells with different symmetry and design by means of single-color pump-probe spectroscopy. By comparing the experimental differential transmittance data as a function of the pump-probe delay with numerical calculations based on an energy-balance rate-equation model, we could quantify an effective value for the optical phonon deformation potential describing the electron-phonon coupling in two-dimensional Ge-based systems. We found nonradiative relaxation times longer than 20 ps even in samples having intersubband energy separations larger than the optical phonon energy, evidencing the presence of a less effective electron-phonon coupling with respect to that estimated in bulk Ge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.