Abstract

Free radicals, detected previously in corneal tissue following 193 nm laser irradiation, may be important agents in the laser/tissue interaction. Electron paramagnetic resonance spectroscopy (EPR) has been used to examine such radical formation in detail. Bovine corneal strips were frozen in liquid nitrogen, irradiated with excimer laser pulses, and assayed by EPR. Exposure conditions were varied to study radical formation dependence on laser intensity and repetition. Results were measured against a quantifiable standard to calculate radical quantum yield. Either weak or intense laser fluences produced comparable tissue EPR signals. Radicals accumulated in frozen tissue for at least 10 initial ablation pulses. Radical quantum yield in cornea was 0.15%. Corneal radical formation is largely a photochemical process driven by the 193 nm laser radiation. Reactive radical species are produced in substantial numbers and likely have a significant clinical role.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.