Abstract

Cellulose derivatives are commonly used as gelling agents in topical and ophthalmic drug formulations. During the course of manufacturing, cellulose derivatives are believed to generate free radicals. These free radicals may degrade the gelling agent, leading to lower viscosity. Free radicals also may react with the active ingredient in the product. The formation of radicals in a 3% hydrogel of hypromellose (hydroxypropyl methylcellulose) was monitored by electron paramagnetic resonance (EPR) spectroscopy and spin trapping techniques. Radicals were trapped with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and quantitated by comparing the EPR intensity with 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxy (TEMPOL), a stable free radical. Typically, the hydrogels showed an initial increase in the radical concentration within 2 days after autoclaving, followed by a drop in radical concentration in 7 days. EDTA prevented the formation of free radicals in the hypromellose (HPMC) hydrogel, suggesting the involvement of metal ions in the generation of free radicals. The oxidizing potential of the hydrogel was estimated by measuring the rate at which methionine (a model for the protein active pharmaceutical ingredient) was degraded, and was consistent with the amount of radicals present in the gel. This study is the first report investigating the application of EPR spectroscopy in detecting and estimating free radical concentration in cellulose based hydrogels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.