Abstract
Exact two-component (X2C) relativistic nuclear hyperfine magnetic field operators were incorporated in X2C ab initio wavefunction calculations at the multireference restricted active space (RAS) level for calculations of nuclear hyperfine magnetic properties. Spin-orbit coupling was treated via RAS state interaction (SO-RASSI). The method was tested by calculations of electron-nucleus hyperfine coupling constants. The approach, implemented in the OpenMolcas program, overcomes a major limitation of a previous SO-RASSI implementation for hyperfine coupling that relied on nonrelativistic hyperfine operators [J. Chem. Theor. Comput. 2015, 11, 538-549] and therefore had limited applicability. Results from calculations on systems with light and heavy main group elements, transition metals, lanthanides, and one actinide complex demonstrate reasonably good agreement with experimental data, where available, as long as the active space can generate sufficient spin polarization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.