Abstract

A method to compute spin–orbit coupling between electronic states is presented. An effective one-electron spin–orbit Hamiltonian is used, based on atomic mean field integrals. The basic electronic states are obtained using the restricted active space (RAS) SCF method. The Hamiltonian matrix is obtained by an extension of the restricted active space state interaction (RASSI) method. Several hundred states can be included. Tests for atoms and molecules from the entire periodic system show accurate results. Computed spin–orbit effects on relative energies are normally accurate within a few percent. The method has been included in the MOLCAS-5.0 quantum chemistry software.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.