Abstract
Theoretical analysis of laser-assisted electron impact ionization of a hydrogen molecular ion H+ 2 at high impact energy and large momentum transfer is carried out. The laser-field effects on the incoming and outgoing electrons are taken into account using the Volkov functions. The field-dressing of the target electron is treated with a quasistatic state approach. Calculations for laser radiation with frequency ω = 1.55 eV and intensity I = 5 × 1011 W/cm2 exhibit strong laser influence on the molecular bond oscillation in laser-assisted electron momentum distributions.
Paper version not known (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have