Abstract

Electron transport properties in β-SiC quantized inversion layers have been studied and the results of electron mobility calculations at room and higher temperatures have been reported. To do so, we have developed a Monte Carlo simulator used in conjunction with the self-consistent solution of the Poisson and Schrödinger equations. We show that for a fixed inversion-charge concentration, β-SiC inversion-layer electrons spread less into the bulk than Si ones as a consequence of the effective mass values. Therefore, the defects of the SiO2/β-SiC (interface roughness, charged centers) will strongly affect electron transport properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.