Abstract

This study focused on electron microscopy studies of microstructural defects formed in an additively manufactured (AM) AlSi10Mg alloy as a result of post-deformation by equal channel angular pressing (ECAP), with the aim of elucidating the fundamental deformation mechanisms that govern the plasticity of both the aluminium matrix and the silicon phase. This article focused on the process of grain refinement, metastable phase transformations, and microstructural defects such as stacking faults or amorphous areas that severely disrupt the face-centred cubic (FCC) crystal lattice symmetry. The findings presented in this study imply that deformation twinning, phase transformation, and amorphization are not mutually exclusive modes of Si phase deformation. Both can occur at an ECAP temperature of 150 °C. At a deformation temperature of 100 °C, amorphization is the dominant deformation mode of the Si phase. It was also discovered that dislocation slip was the predominant deformation mode of Al matrix at 150 °C, while at 100 °C, additionally stacking faults were formed within the Al matrix. The present findings provide not only a fundamental understanding of the deformation micro-mechanism of the SLMed AlSi10Mg alloy but also open a new horizon for the development of the next generation of structural materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call