Abstract

The electron mass is known to be sensitive to local fluctuations in the electromagnetic field, and undergoes a small shift in a thermal field. It was claimed recently that a very large electron mass shift should be expected near the surface of a metal hydride (Widom and Larsen 2006 Eur. Phys. J. C 46 107). We examine the shift using a formulation based on the Coulomb gauge, which leads to a much smaller shift. The maximization of the electron mass shift under nonequilibrium conditions seems nonetheless to be an interesting problem. We consider a scheme in which a current in a hollow wire produces a large vector potential in the wire centre. Fluctuations in an LC circuit with nearly matched loss and gain can produce large current fluctuations; and these can increase the electron mass shift by orders of magnitude over its room temperature value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.