Abstract

The insulating state of matter is characterized by the excitation spectrum, but also by qualitative features of the electronic ground state. The insulating ground wavefunction in fact: (i) sustains macroscopic polarization, and (ii) is localized. We give a sharp definition of the latter concept, and we show how the two basic features stem from essentially the same formalism. Our approach to localization is exemplified by means of a two--band Hubbard model in one dimension. In the noninteracting limit the wavefunction localization is measured by the spread of the Wannier orbitals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call