Abstract

In this contribution, we investigated the properties of magnetron-sputtered TiN thin films on sapphire and quartz substrates before and after 5 MeV electron irradiation with a fluence of 7 × 1013 e/cm2. Structural, morphological, optical, and electrical properties were analyzed to observe the impact of electron irradiation on the TiN thin films. The results showed improved electrical properties of the TiN thin films due to high-energy electron irradiation, resulting in increased specific conductivity compared to the as-deposited thin films on both sapphire and quartz substrates. The structural features of the TiN thin films on the sapphire substrate transformed from polycrystalline to amorphous, while the TiN thin films deposited on the quartz substrate remained unchanged. Chemical state analysis indicated changes in the metallic bonding between Ti and N in the deposited TiN on the sapphire substrate, while TiN deposited on the quartz substrate retained its Ti-N bonding. This study provides insights into the effects of electron irradiation on TiN thin films, emphasizing the importance of investigating radiation resistance for the reliable operation of optoelectronic devices and photovoltaic systems in extreme ionizing radiation environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.