Abstract
In this work, S doped Fe2B (Fe2B-S) was synthesized by sintering method and applied for the enhanced dechlorination of trichlorethylene (TCE). The degradation ratio (D) of TCE was 99.8% with reaction rate constant (kobs) of 0.956 h−1 by 10.0at% S doped Fe2B (corresponding to Fe2B-S10.0), compared to D and kobs values 37.3% and 0.067 h−1 by Fe2B, respectively. The major dechlorination products of acetylene, ethene, ethane and C3-C6 hydrocarbon compounds were observed from a reductive β-elimination pathway. S doped and undoped Fe2B could form the first-level in-situ galvanic cell, and the returned S provided a second-level galvanic cell to further enhance electron transfer. The doped S worked as electron donor to increase the density of localized unpaired electrons, and the electron enriched Fe atoms leading to stronger reducibility were verified by the density functional theory (DFT) calculation. This work provides a complete insight into the enhancement mechanism of S doped Fe2B and guides the potential design of zero-valent iron (ZVI) with properties tailored for chlorinated hydrocarbons dechlorination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.