Abstract

Electronic transitions in a merocyanine dye were studied in the gas phase using electron energy loss spectroscopy and compared with the optical absorption spectra. It was found that the most intense band of the S1 ← S0 polymethine transition lies at 2.8 eV in vapor and 2.4 eV in n-hexane. Higher electronic transitions in the range of 3.7–7 eV were also analyzed. Besides, the singlet-triplet transition was revealed near 1.8 eV. TDDFT simulation of singlet-singlet transitions in the studied molecule was performed using B97D3, B3LYP, B3PW91 and wB97xD functionals. The calculated energy of the long-wavelength transition is closest to the experimental value with the latter. Other functionals result in the energy 0.2–0.4 eV exceeding experimental. The interpretation of higher transitions/bands is complicated due to their superposition and difference between experimental and calculated data. The excitation anisotropy spectra were measured in glycerol for more reliable determination of higher transitions and comparison with the TDDFT/PCM simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call