Abstract

Recent measurements of the (e, 3-1e) fourfold differential cross sections for the double ionization of helium are here extended to more complex targets, namely neon, argon and molecular nitrogen. The previous observations of large angular shifts in the experimental fourfold differential cross section (4DCS) distributions with respect to the momentum transfer axis and the existence of structures in these distributions are found to similarly hold here. For the three investigated targets, the experimental data are compared with the kinematical analysis previously given to describe the second-order, ‘two-step 2’ (TS2) double ionization (DI) mechanism. Such a comparison confirms our interpretation which allows the observed shifts and structures in the intensity distributions to be mostly related to the ‘two-step 2’ mechanism, which is shown to predominate over the first-order ‘shake-off’ (SO) and ‘two-step 1’ (TS1) mechanisms under the present kinematics. The experimental data are also compared to the predictions of a first Born and second Born model, showing rather mixed agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.