Abstract

Amorphous selenium (a-Se) is one of the most successful photoconductors for direct-conversion X-ray detectors. However, the initial carrier recombination is believed to be responsible for high electron–hole pair (EHP) creation energy in a-Se. The simultaneously generated electron and its hole twin can recombine (geminate recombination) or the non-geminate electrons and holes in the columnar track of the primary photoelectron can also recombine (columnar recombination). The question of which mechanism (geminate or columnar) dominates in X-ray irradiation has not been resolved. In this paper, we examine these two recombination mechanisms and analyze them by fitting with published experimental data. The analysis and results are consistent with the columnar recombination mechanism at X-ray irradiation. We also propose an empirical expression for the electric field and photon energy-dependent EHP creation energy in a-Se at room temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.