Abstract
DNA double helices have been shown to conduct electron holes over significant distances. Here, we report on the hole flow patterns within a more intricately folded DNA complex, the 8-17 deoxyribozyme bound to a DNA pseudosubstrate, incorporating three helical elements and two catalytically relevant loops. The observed hole flow patterns within the complex permitted a quantitative assessment of the stacking preferences of the three constituent helices and provided evidence for significant transitions within the complex's global geometry. The patterns further suggested varying levels of solvent exposure of the complex's constituent parts, and revealed that a catalytically relevant cytosine within the folded complex exists in an unusual structural/electronic environment. Our data suggest that the study of charge flow may provide novel perspectives on the structure and folding of intricately folded DNAs and RNAs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.