Abstract

The property of charge (electron hole) flow in DNA duplexes has been the subject of intensive study. RNA–DNA heteroduplexes have also been investigated; however, little information exists on the conductive properties of purely RNA duplexes. In investigating the relative conductive properties of a three molecule DNA–DNA duplex design, using piperidine and aniline to break strands at modified bases, we observed that duplexes with guanine-rich termini generated a large oxidative end-effect, which could serve as a highly sensitive reporter of charge flow through the duplexes. The end-effect was found faithfully to report attenuations in charge flow due to certain single-base mismatches within a duplex. Comparative charge flow experiments on DNA–DNA and RNA–RNA duplexes found large end-effects from both, suggesting that the A and B family of double helices conduct charge comparably. The sheer magnitude of the end-effect, and its high sensitivity to helical imperfections, suggest that it may be exploited as a sensitive reporter for DNA mismatches, as well as a versatile device for studying the structure, folding, and dynamics of complexly folded RNAs and DNAs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.