Abstract
The effect of excitation frequency in the 13.56–60 MHz range on the electron energy distribution function (EDF) of capacitively coupled plasma is investigated. Under a fixed rf voltage (50–130 V peak-to-peak) and argon pressure (100 mTorr), a remarkable change in the EDF is observed: a Druyvesteyn type at low frequencies (≃13.56 MHz) evolves into a bi-Maxwellian type in a very high frequency (VHF) above 30 MHz. The transition frequency decreases with increasing the rf voltage. The observed frequency effect on the EDF is tentatively explained in terms of the transition of electron heating mode from the collisional ohmic heating at low frequencies into the plasma surface heating in the VHF range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.