Abstract

In this paper, we have studied field emission properties of highly dense arrays of multi-walled carbon nanotubes (CNTs) used as cathodes in diode-type field emission devices with a phosphor screen. For the high-density CNT emitters it is demonstrated that the emission sites are located on the CNT-cathode edges, which is direct experimental evidence of the ‘edge effect’. The results of computer simulations (using ‘ANSYS Electromagnetic’ software) are presented to confirm the experimental data and to analyze the effect of patterning on the electric field distribution for high-density CNT arrays. It is shown that selective-area removal of nanotubes in the arrays leads to the formation of additional edges characterized by the high field enhancement factor and enhanced emission from the CNT cathodes. In addition, scanning probe microscopy techniques are employed to examine surface properties of the high-density CNT arrays. For CNT arrays of ‘short’ nanotubes, the work function distribution over the sample surface is detected using a scanning Kelvin microscopy method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call