Abstract
The implementation of ultrasoft pseudopotentials into time-dependent density-functional perturbation theory is detailed for both the Sternheimer approach and the Liouville-Lanczos (LL) method, and equations are presented in the scalar relativistic approximation for periodic solids with finite momentum transfer q. The LL method is applied to calculations of the electron energy loss (EEL) spectrum of face-centered cubic bulk Au both at vanishing and finite q. Our study reveals the richness of the physics underlying the various contributions to the density fluctuation in gold. In particular, our calculations suggest the existence in gold of two quasi-separate 5d and 6s electron gasses, each one oscillating with its own frequency at resp. 5.1 eV and 10.2 eV. We find that the contribution near 2.2 eV comes from 5d to 6s interband transitions modified by the intraband contribution to the real part of the dielectric function, which we call a mixed excitation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.