Abstract

Abstract Diamond films with different crystal structures, morphologies and surface characteristics were synthesized under various deposition parameters and annealing conditions by the microwave plasma chemical vapor deposition (MWPCVD) method using gas mixtures of CH4, CO and H2. The effects of CH4 concentrations, grain sizes, grain orientations, film thicknesses and annealing technologies in various ambient gases on planar electron emission of diamond films were studied. The results show that small-grained and (011)-oriented diamond films deposited under the condition of high CH4 concentration present the properties of high emission current and low threshold voltage; the emission current increases with decreasing the film thickness. There are largest current density and lowest threshold voltage at the film thickness of 1.5 μm. The annealing in H2 after deposition appears to be more beneficial in lowering the threshold voltage, increasing emission current and improving stability for electron emission of films than annealing in N2 or Ar. These results indicate that diamond thin films with high emission current, low threshold voltage and high stability can be obtained by selecting suitable deposition parameters of diamond films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.