Abstract

The formation of the magnetic moment in C- and N-doped MgO is the result of a delicate interplay between Hund’s coupling, hybridization, and Jahn–Teller distortion. The balance depends on a number of environmental variables including electron doping. We investigate such a dependence by self-interaction corrected density functional theory and we find that the moment formation is robust with respect to electron doping. In contrast, the local symmetry around the dopant is more fragile and different geometries can be stabilized. Crucially the magnetic moment is always extremely localized, making any carrier mediated picture of magnetism in d0 magnets unlikely.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.