Abstract

Exploring inexpensive electrocatalysts that can efficiently and selectively convert CO2 into hydrocarbon fuels is important to promote carbon neutrality and solve the energy crisis. Current electrocatalysts, such as Cu-based alloys, single-atom catalysts, and dual-atom catalysts, use the d states of metal in the electrocatalytic CO2 reduction reaction. Inspired by this, this work studies CO2 reduction reaction from another approach. Herein, using first principles study, we systematically investigate the prospect of nonmetal (B, C, O and F) doped monolayers g-GaN as electrocatalysts for the CO2 reduction reaction. We found that nonmetal doping can effectively regulate the electron distribution and p-band center of the active center (N site), which can adjust the initial adsorption, activation degree, charge transfer amount of CO2, and promote the formation of intermediates. Interestingly, B and C doped systems have better catalytic activity for CH4, with limiting potentials of −0.61 and −0.53 V, respectively. More importantly, F doped system has higher activity and selectivity for CH3OH production and inhibit competitive HER, with lower limiting potentials of −0.60 V. This study provides a new theoretical basis for the design and screening of electrocatalysts with high activity and product selectivity using nonmetal as the active site.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.