Abstract
Microwave interferometry (MWI) is a nonintrusive diagnostic technique, capable of measuring small quantities of electrons present in a flame plasma. In this paper, a 94 GHz microwave interferometer is characterized and validated to perform robust and reliable measurements of electron concentrations in thermal and nonthermal plasmas in a shock tube. The MWI system is validated first by measuring the refractive index of a dielectric material. Subsequently, the system is used for measuring electron densities during the thermal ionization of argon and krypton in shock tube experiments. The measured activation energies are in good agreement with both the measured values from previous studies and theoretical values. The MWI system is finally used for measuring electron density time-histories in fuel oxidation experiments in the shock tube. The electron density profile of methane combustion shows a peak at the ignition time which agrees with pressure measurements. Experimental electron histories are also in overall agreement with predictions of the methane ion chemistry model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.