Abstract
We study the influence of Coulomb correlations on spectral and magnetic properties of fcc cobalt using a combination of density functional theory and dynamical mean-field theory. The computed uniform and local magnetic susceptibilities obey the Curie–Weiss law, which, as we demonstrate, occurs due to the partial formation of local magnetic moments. We find that the lifetime of these moments in cobalt is significantly less than in bcc iron, suggesting a more itinerant magnetism in cobalt. In contrast to the bcc iron, the obtained electron self-energies exhibit a quasiparticle shape with the quasiparticle mass enhancement factor m*/m ~ 1.8, corresponding to moderately correlated metal. Finally, our calculations reveal that the static magnetic susceptibility of cobalt is dominated by ferromagnetic correlations, as evidenced by its momentum dependence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Pisʹma v žurnal êksperimentalʹnoj i teoretičeskoj fiziki
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.