Abstract

In the realm of photocatalysis, understanding the interface issues (solid/solid and solid/liquid) inherent in heterojunction at the atomic level is the ultimate for engineering an efficient photocatalyst. Herein, an electrophoretic deposition technique is adopted to synthesize BiOI/β-Bi2O3 heterojunction, exhibiting superior photocatalytic activity and stability in H2 evolution (91.5 μmol g–1 h−1) and H2O2 production (11.3 mg L–1 h−1). Combined with the experimental and computational results, a lower free energy of hydrogen evolution reaction (252.4 meV) has been observed contrast to BiOI and β-Bi2O3 samples. A carrier transfer process of like S-scheme heterojunction is proposed based on density of states (DOS) and carrier distribution calculations. The theoretical calculations illustrate the transition dipole moment, migration and accumulation of carrier in BiOI/β-Bi2O3 heterojunction. Subsequent ab initio molecular dynamics (AIMD) results of solid/liquid interface systems (BiOI/β-Bi2O3/H2O and β-Bi2O3/H2O) unravel the interface H2O (solvent) behaviors. The local aggregation of photo-generated electrons in BiOI/β-Bi2O3/H2O leads to a large potential drop, high proton migration rate and the steady electric double layer (EDL) structure compared to the β-Bi2O3/H2O, which facilitates the occurrence of photocatalytic reactions in solution. In addition to offering new insights into the hydrogen evolution and proton transfer in the EDL model and the association between the heterojunction effect and EDL structure, this work also introduces a novel design strategy for Bi-based heterojunctions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call