Abstract

Electron capture and excitation in O[sup +]([sup 4][ital S],[sup 2][ital D],[sup 2][ital P])+He collisions above 100 eV are studied theoretically by using a semiclassical molecular representation and electron capture in He[sup +]+O([sup 3][ital P]) collisions; excitation and deexcitation in O[sup +]([sup 4][ital S])+He[leftrightarrow]O[sup +]([sup 2][ital D])+He collisions at lower energies are studied by using a fully-quantum-mechanical molecular representation. At higher energies, nonadiabatic couplings are the driving forces that cause transitions. At collision energies below 10 eV, transitions are driven by spin-orbit couplings. At kilo-electron-volt energies, the contribution from metastable O[sup +]([sup 2][ital D],[sup 2][ital P]) ions to electron capture is much larger than that from the ground O[sup +]([sup 4][ital S]) ions. At energies below 1 eV, the cross section for electron capture in He[sup +]+O collisions is very small, with a magnitude of less than 10[sup [minus]20] cm[sup 2]. The cross sections for the excitation-deexcitation of metastable O[sup +] ions are larger, with values near 10[sup [minus]18] cm[sup 2].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.