Abstract

We present and analyze the first high-resolution hard X-ray spectra from a solar flare observed in both X-ray/γ-ray continuum and γ-ray lines. Spatially integrated photon flux spectra obtained by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) are well fitted between 10 and 300 keV by the combination of an isothermal component and a double power law. The flare plasma temperature peaks at 40 MK around the time of peak hard X-ray emission and remains above 20 MK 37 minutes later. We derive the nonthermal mean electron flux distribution in one time interval by directly fitting the RHESSI X-ray spectrum with the thin-target bremsstrahlung from a double-power-law electron distribution with a low-energy cutoff. We find that relativistic effects significantly impact the bremsstrahlung spectrum above 100 keV and, therefore, the deduced mean electron flux distribution. We derive the evolution of the injected electron flux distribution on the assumption that the emission is thick-target bremsstrahlung. The injected nonthermal electrons are well described throughout the flare by a double-power-law distribution with a low-energy cutoff that is typically between 20 and 40 keV. We find that the power in nonthermal electrons peaks before the impulsive rise of the hard X-ray and γ-ray emissions. We compare the energy contained in the nonthermal electrons with the energy content of the thermal flare plasma observed by RHESSI and GOES. The minimum total energy deposited into the flare plasma by nonthermal electrons, 2.6 × 1031 ergs, is on the order of the energy in the thermal plasma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call