Abstract
When heated by high-energy electron beam (EB), SiC can decompose into C and Si vapor. Subsequently, Si vapor reacts with metal oxide thin film on substrate surface and formats dense SiO 2 thin film at high substrate temperature. By means of the two reactions, SiC/SiO 2 composite thin film was prepared on the pre-oxidized 316 stainless steel (SS) substrate by electron beam-physical vapor deposition (EB-PVD) only using β-SiC target at 1000 °C. The thin film was examined by energy dispersive spectroscopy (EDS), grazing incidence X-ray asymmetry diffraction (GIAXD), scanning electron microscopy (SEM), atomic force microscopy (AFM), backscattered electron image (BSE), electron probe microanalysis (EPMA), X-ray photoelectron spectroscopy (XPS) and Fourier transformed infra-red (FT-IR) spectroscopy. The analysis results show that the thin film is mainly composed of imperfect nano-crystalline phases of 3C-SiC and SiO 2, especially, SiO 2 phase is nearly amorphous. Moreover, the smooth and dense thin film surface consists of nano-sized particles, and the interface between SiC/SiO 2 composite thin film and SS substrate is perfect. At last, the emissivity of SS substrate is improved by the SiC/SiO 2 composite thin film.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.