Abstract

Ethylene-propylene diene monomer (EPDM) containing dicyclopentadiene (DCPD) and ethylidene norbornene (ENB) as the termonomers, styrene-butadiene rubber (SBR), and acrylonitrile-butadiene rubber (NBR) have been surface-modified by 10% methyl ethyl ketone (MEK) solutions of trimethylol propane triacrylate (TMPTA) at an irradiation dose of 100 kGy. The irradiation dose and TMPTA concentration were optimized using samples treated with 2, 5, 10, 20, and 50% TMPTA and 50, 100, 200, and 500 kGy doses. Two per cent solutions of acrylate rubber having diene, chloro, and epoxy groups at the reactive sites and tripropyleneglycol diacrylate (TPGDA) and tetramethylol methane tetracrylate (TMMT) were also employed as the surface modifiers. The level and nature of the vulcanization system were varied. The modified rubbers were characterized by attenuated total reflection infrared (ATR-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and contact angle measurements. IR and XPS studies confirmed the generation of polar groups such as C=O and -C-O-C on the surfaces. The contact angles and the surface energy change with the nature of the modifiers, rubbers, diene monomers, the crosslinking system and the level of the curing agent. The total surface energy and the thermodynamic work of adhesion of the different systems have been correlated with the amount and the nature of the polar groups generated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.