Abstract
The formation of a beam of runaway electrons in a diode filled with helium at a pressure from 0.1 to 760 Torr was studied under conditions of a pulsed ≈4 ns) high ≈200 kV) voltage applied to the discharge gap. Both theoretical results and experimental data indicate that the electron beam is generated both at a large strength of the electric field, when the fraction of runaway electrons is large, and in a field of low strength, where intensive electron multiplication takes place. In the latter case, a high current can be obtained despite a small fraction of runaway electrons relative to their total number. The electron beams obtained in the helium-filled diode had a current amplitude of up to 140 A (corresponding to a current density above 10 A/cm2) at an electron energy of ∼150 keV.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have