Abstract

A printable nanocomposite hydrogel was fabricated with intercalation of alginate into clay galleries followed by irradiation crosslinking graft copolymerization acrylic acid to remove inorganic micropollutants from wastewater. In this regard, nanocomposite-based ink was treated by electron beam irradiation (5–60 kGy), and then irradiated inks were printed using an extrusion-based printer. Structural investigates showed that ink suspension formed a crosslinked network upon irradiation, which could preserve its shape during printing and maintain 3D printed architecture. No additional post-print crosslinking was required due to the formation of free radical and remaining in printed hydrogels as shown by electron spin resonance. Printed hydrogels treated with 5 and 60 kGy irradiation experienced instrumental changes, while functional properties of 15–45 kGy irradiated samples were unaffected upon printing. Losing crystallinity and thermal instability of hydrogels after printing were inhibited through irradiation crosslinking. Metal ion adsorption capacity showed that crosslinked printed hydrogels effectively removed heavy metal ions with high-capacity and fast-responsive. Moreover, metal ions adsorption by printed hydrogels was not selective, thus they can be used to remove various metal ion pollutants from wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.