Abstract
Using 3D particle-in-cell simulation, we characterize energy conversion, as a function of guide magnetic field, in a thin current sheet in semirelativistic plasma, with relativistic electrons and subrelativistic protons. There, magnetic reconnection, the drift-kink instability (DKI), and the flux-rope kink instability all compete and interact in their nonlinear stages to convert magnetic energy to plasma energy. We compare fully 3D simulations with 2D in two different planes to isolate reconnection and DKI effects. In zero guide field, these processes yield distinct energy conversion signatures: ions gain more energy than electrons in 2Dxy (reconnection), while the opposite is true in 2Dyz (DKI), and the 3D result falls in between. The flux-rope instability, which occurs only in 3D, allows more magnetic energy to be released than in 2D, but the rate of energy conversion in 3D tends to be lower. Increasing the guide magnetic field strongly suppresses DKI, and in all cases slows and reduces the overall amount of energy conversion; it also favors electron energization through a process by which energy is first stored in the motional electric field of flux ropes before energizing particles. Understanding the evolution of the energy partition thus provides insight into the role of various plasma processes, and is important for modeling radiation from astrophysical sources such as accreting black holes and their jets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.