Abstract

Here we report on the ultrafast magnetization dynamics of Gd(0001), which we investigated as a function of equilibrium temperature by employing the femtosecond time-resolved magneto-optical Kerr effect (MOKE) and modeling by the Landau-Lifshitz-Bloch equation in combination with the two-temperature model. Based on the observed temperature-dependent transient MOKE signals, we separate the magnetization dynamics into two regimes at delays of (i) a few picoseconds and (ii) several 100 femtoseconds. In the picosecond regime, the demagnetization time determined from the experiment increases with temperature from 0.8 ps at 50 K to 1.5 ps at 280 K. A successful description of this observation was achieved by considering the dynamics of the $4f$ spin system coupled to $5d$ conduction electrons within two coupling mechanisms: (a) through electronic scattering and (b) spin-flip scattering mediated by phonons. We conclude that at temperatures below the Debye temperature, a hot electron-mediated process describes the experimentally found demagnetization times of $\ensuremath{\approx}$$0.8$ ps well. At higher temperatures phonon-mediated processes have to be included to explain the 2 times longer demagnetization time. In the second regime at time delays of few 100 fs we find an increase in the MOKE rotation and ellipticity at 50 K at delays before demagnetization sets in. Above 50 K the transient changes in rotation and ellipticity are of opposite sign. We explain this behavior by competing magnetic and nonmagnetic contributions in the transient MOKE signals at these delays directly after optical excitation when excited phonons do not yet facilitate angular momentum transfer to the lattice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.