Abstract

In this study, the laser-induced magnetization dynamics of the lanthanide ferromagnets Gadolinium (Gd), Terbium (Tb) and their alloys is investigated using femtosecond (fs) time-resolved x-ray magnetic circular dichroism (XMCD), the magneto-optical Kerr effect (MOKE) and magnetic second harmonic generation (MSHG). The magnetization dynamics is analyzed from the time scale of a few fs up to several hundred picoseconds (ps). The contributions of electrons, phonons, spin fluctuations, as well as the temporal regimes corresponding to the spin-orbit and exchange interactions are disentangled. In addition to possible applications in magnetic storage devices, understanding magnetization dynamics in lanthanides is also important because of their different magnetic structure compared to well-studied itinerant ferromagnets. Lanthanides are model Heisenberg-ferromagnets with localized 4f magnetic moments and long range magnetic ordering through indirect exchange interaction. By optical excitation of the conduction electrons, which mediate the exchange interaction, and studying the induced dynamics of the localized 4f and delocalized 5d6s magnetic moments, one can obtain insight into the angular momentum transfer at ultrafast time scales. Moreover, lanthanides offer the possibility to tune spin-lattice coupling via the 4f shell occupation and the concomitant changes in the 4f spin and orbital moments due to Hund’s rules. Utilizing this fact, the importance of spin-lattice coupling in laser-induced demagnetization is also analyzed by comparing the magnetization dynamics in Gd and Tb. By investigating the magnetization dynamics of localized 4f moments of Gd and Tb using time-resolved XMCD, it is found that the demagnetization proceeds in both metals in two time scales, following fs laser excitation, which are classified as: (i) non-equilibrium (t . 1 ps) and (ii) quasi-equilibrium (t ≫ 1 ps), with respect to equilibration of electron and phonon temperatures. The characteristic demagnetization time in this non-equilibrium regime is similar for Gd and Tb, while in the quasi-equilibrium regime it differs following the strength of the spin-orbit coupling. To disentangle different microscopic mechanisms, conduction electron magnetization dynamics of Gd(0001) is investigated in further detail using time-resolved MOKE. By comparing the dynamics of the 4f moments with the delocalized 5d6s moments, an insight into the angular momentum transfer is obtained and the importance of the intra-atomic exchange interaction is analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.