Abstract

Rigid alicyclic frameworks (often referred to as molracs, relating to the molecular rack nature of the frame) have been used to vary the separation between organic electron-acceptor (quinone) moieties and chromophoric polypyridylruthenium(II) centres, and between metal centres in Ru–Ru and Ru–Os dinuclear complexes. Photophysical studies have allowed a preliminary insight into the effectiveness of such alicyclic structures in mediating intramolecular photoinduced energy and electron transfer. In the chromophore–spacer–quinone dyads, solvent-dependent quenching of the ruthenium(II) MLCT emission was observed and attributed to electron transfer processes. Distance and stereochemical dependencies of the quenching suggested that through-bond coupling was a factor in these systems. In the heterodinuclear systems, the photo-excited ruthenium(II) chromophore underwent intramolecular energy transfer to the osmium(II) component. A through-space Forster dipole–dipole mechanism could adequately account for the rate of the energy transfer process observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.