Abstract
As the electronics industry continues to push for high performance and miniaturization, the demand for higher current densities, which may cause electromigration failures in an IC, interconnects. Electromigration is a phenomenon that metallic atoms constructing the line are transported by electron wind. The damage induced by electromigration appears as the formation of voids and hillocks. A numerical simulation method for electromigration void incubation, and afterwards, void propagation, based on commercial software ANSYS Multiphysics and FORTRAN code, is presented in this paper. The electronic migration formulation considering the effects of the electron wind force, stress gradients, temperature gradients, and the atomic concentration gradient has been developed for the electromigration failure mechanisms. Due to introducing the atomic concentration gradient driving force in atomic flux formulations, the conventional atomic flux divergence method is no longer valid in electromigration (EM) simulation. Therefore, the corresponding EM atomic concentration redistribution algorithm is proposed using FORTRAN code. Finally, the comparison of voids generation through the numerical example of a standard wafer electromigration accelerated test (SWEAT) structure with the measurement result is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.